Homework 3 in MEE 322 Structural Mechanics | Normal and Shear Stresses Under Combined Loading Part 2


Problem 1

Three forces act on the tip of a L-shaped rod with a cross-sectional radius of 0.5 in.

(a) Determine the normal and shear stress at points A and B and draw the stress cube at those points based on the given coordinate system.

(b) Determine the maximum normal stress on the cross-section and locate the point at which it occurs.

Problem 2

The simply supported solid shaft has a radius of 15 mm and is under static equilibrium. Pulley C has a diameter of 100 mm. The pulleys B and D have the same diameter as each other. The forces on pulley B are at an angle of 45 to the negative z-axis. The forces on pulley C and pulley D are in the z and -y direction. The shaft dimensions are in mm.

(a) Determine the maximum bending and torsional stresses in the shaft.

(b) Locate the point(s) on the cross-section where the bending stress is maximum.

Problem 3

The structural part of a setup to measure net belt tensions in pulleys is shown in the figure. The belt tensions at both sides of the pulley at B (radius 10 cm) are P and F=0.1*P along z and a reaction force is measured from the pulley at C (radius 2 cm), which is connected to a load cell at E with an axial member parallel to x. Pulleys are rigidly attached to rod AD, which is made with a ductile steel rod 60 cm long and 1.27 cm in diameter. Length AB=0.20 m, and length DC=0.15 m. There is a spherical hinge at A and a plane hinge at D. The latter constrains motion in the x-z plane only.

(a) Draw bending moment and torsion diagrams for this structure as functions of the unknown tension P and use them to draw a diagram of the critical section showing internal loads (bending and torsion moments) and the critical points.

(b) Use your results from part a to determine the maximum normal stress due to bending and the maximum shear stress due to torsion in terms of the unknown tension P. Calculate the maximum value that P can have if only bending stresses are considered (with σallow = 350 MPa) and then if only torsion stresses are considered (with τallow = 175 MPa).


Purchase the Complete Solution to this Homework Now

Book-Covers

Homework #2 in MEE 322 Structural Mechanics

This is the complete solution manual to the problems in Homework 3 of ME322: Structural Mechanics. The 3 problems included in the manual are written above. The PDF document will be sent to your email address within 24 hours from the time of purchase. The email will be coming from homeworkhelp@engineering-math.org Do not forget to check on your spam folder. If you have not received your file in 24 hours, kindly send us an email at help@engineering-math.org

$20.00