College Physics by Openstax Chapter 4 Problem 2


If the sprinter from the previous problem accelerates at that rate for 20 m, and then maintains that velocity for the remainder of the 100-m dash, what will be his time for the race?


Solution:

Solving for the time it takes to reach the first 20 meters.

\begin{align*}
\Delta x & =v_{0}t+\frac{1}{2}at^{2} \\
20 \ \text{m} & = \left( 0 \ \text{m/s} \right)t + \frac{1}{2}\left( 4.20 \ \text{m/s}^{2} \right)t^{2} \\
20 & = 2.1 t^{2} \\
\frac{20}{2.1}& = \frac{\cancel{2.1} \ t^{2}}{\cancel{2.1}} \\
t^{2} & = 9.5238 \\
\sqrt{t^{2}} & = \sqrt{9.5238} \\
t_{1} & = 3.09 \ \text{s}
\end{align*}

We can compute the velocity of the sprinter at the end of the first 20 meters.

\begin{align*}
v^2 & = v_{0}^2 + 2ax \\
v^2 & = \left( 0 \ \text{m/s} \right)^2 + 2\left( 4.20 \ \text{m/s}^2 \right) \left( 20 \ \text{m} \right) \\
v & = \sqrt{2\left( 4.20 \right)\left( 20 \right)} \ \text{m/s} \\
v & = 12.96 \ \text{m/s}
\end{align*}

For the remaining 80 meters, the sprinter has a constant velocity of 12.96 m/s. The sprinter’s time to run the last 80 meters can be computed as follows.

\begin{align*}
\Delta x & = vt \\
80 \ \text{m} & = \left( 12.96 \  \text{m/s} \right)\  t_{2} \\
\frac{80 \ \text{m}}{12.96 \ \text{m/s}} & =\frac{\cancel{12.96 \ \text{m/s} } \ \ t_{2}}{\cancel{12.96 \ \text{m/s}}} \\
t_{2} & = \frac{80}{12.96} \ \text{s} \\
t_{2} & = 6.17 \ \text{s} \\
\end{align*}

The sprinter’s total time, t_{T}, to finish the 100-m race is the sum of the two times.

\begin{align*}
t_{T} & = t_{1} + t_{2} \\
t_{T} & = 3.09 \ \text{s} + 6.17 \ \text{s} \\
t_{T} & = 9.26 \ \text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements