Chuck-a-Luck: Challenging Probability Problem


Chuck-a-Luck is a gambling game often played at carnivals and gambling houses. A player may bet on anyone of the numbers 1, 2, 3, 4, 5, 6. Three dice are rolled. If the player’s number appears on one, two, or three of the dice, he receives respectively one, two, or three times his original stake plus his own money back; otherwise, he loses his stake. What is the player’s expected loss per unit stake? (Actually, the player may distribute stakes on several numbers, but each such stake can be regarded as a separate bet.)


Solution:

Let us compute the losses incurred (a) when the numbers on the three dice are different, (b) when exactly two are alike, and (c) when all three are alike. An easy attack is to suppose that you place a unit stake on each of the six numbers, thus betting six units in all. Suppose the roll produces three different numbers, say 1, 2, 3. Then the house takes the three unit stakes on the losing numbers 4, 5, 6 and pays off the three winning numbers 1, 2, 3. The house won nothing, and you won nothing. That result would be the same for any roll of three different numbers.

Next suppose the roll of the dice results in two of one number and one of a second, say 1, 1, 2. Then the house can use the stakes on numbers 3 and 4 to payoff the stake on number 1, and the stake on number 5 to payoff that on number 2. This leaves the stake on number 6 for the house. The house won one unit, you lost one unit, or per unit stake you lost 1/6.

Suppose the three dice roll the same number, for example, 1, 1, 1. Then the house can pay the triple odds from the stakes placed on 2, 3, 4 leaving those on 5 and 6 as house winnings. The loss per unit stake then is 2/6. Note that when a roll produces a multiple payoff the players are losing the most on the average.

To find the expected loss per unit stake in the whole game, we need to weight the three kinds of outcomes by their probabilities. If we regard the three dice as distinguishable –say red, green, and blue — there are 6 \times 6 \times 6= 216 ways for them to fall.

In how many ways do we get three different numbers? If we take them in order, 6 possibilities for the red, then for each of these, 5 for the green since it must not match the red, and for each red-green pair, 4 ways for the blue since it must not match either of the others, we get 6 \times 5 \times 4 = 120 ways.

For a moment skip the case where exactly two dice are alike and go on to three alike. There are just 6 ways because there are 6 ways for the red to fall and only 1 way for each of the others since they must match the red.

This means that there are 216 - 126 = 90 ways for them to fall two alike and one different. Let us check that directly. There are three main patterns that give two alike: red-green alike, red-blue alike, or green-blue alike. Count the number of ways for one of these, say red-green alike, and then multiply by three. The red can be thrown 6 ways, then the green 1 way to match, and the blue 5 ways to fail to match, or 30 ways. All told then we have 3 \times 30 = 90 ways, checking the result we got by subtraction.

We get the expected loss by weighting each loss by its probability and summing as follows:

\underbrace{\frac{120}{216}\times 0}_\text{none alike} + \underbrace{\frac{90}{216}\times \frac{1}{6}}_\text{2 alike}+\underbrace{\frac{6}{216}\times \frac{2}{6}}_\text{3 alike} = \frac{17}{216} \approx 0.079

Thus, you lose about 8% per play. Considering that a play might take half a minute and that government bonds pay you less than 4% interest for a year, the attrition can be regarded as fierce.

This calculation is for regular dice. Sometimes a spinning wheel with a pointer is used with sets of three numbers painted in segments around the edge of the wheel. The sets do not correspond perfectly to the frequencies given by the dice. In such wheels I have observed that the multiple payoffs are more frequent than for the dice, and therefore the expected loss to the bettor greater.


Advertisements
Advertisements