Category Archives: Mathematics

Includes Engineering Mathematics like Algebra, Geometry, Trigonometry, Calculus, Differential Equations, Probability, Statistics

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 2 — Special Second-Ordered Differential Equations


Question:

\frac{d}{dx}\left(x\:\frac{dy}{dx}\:+\left(1+x\right)\:y\right)\:=12\:\:;\:\frac{dy}{dx}=0,\:y=0,\:x=1

Solution:

Since the equation is in the form d/dx (dy/dx + y P(x) = Q(x) , we use Case 1

\begin{align*}
let\:u & = x\frac{dy}{dx}+\left(1+x\right)\:y
\\ \int \:\frac{du}{dx}\:&=\int \:12
\\u &=12x+C_1
\end{align*}

Solving for the value of C1 using the initial values.

\begin{align*}
x\frac{dy}{dx}+\left(1+x\right)y\: & =12x\:+C_1\:;\:\frac{dy}{dx}=0,\:y=0,\:x=1
\\1(0) + (1+1)0 & = 12(1) + C_1  
\\0+0 & =12+C_1
\\-12 & =C_1
\end{align*}

Rewriting the equation into the general form of a first-order linear differential equation (FOLDE).

\left[x\frac{dy}{dx}+\left(1+x\right)y=12x-12\right]\frac{1}{x}
\\\frac{dy}{dx}+\left(\frac{1+x}{x}\right)y=12-\frac{12}{x}
\\\frac{dy}{dx}+\left(\frac{1}{x}+1\right)y=12-\frac{12}{x}

Since the equation is now in the form of dy/dx + y P(x) = Q(x), we use FOLDE

\\\frac{dy}{dx}+\left(\frac{1}{x}+1\right)y=12-\frac{12}{x}

From the general form of a first-order differential equation, we have

\\P \left( x \right)= \left(\frac{1}{x}+1\right) 
\\Q\left( x \right)= 12-\frac{12}{x}

Compute for the integrating factor

\begin{align*}
\phi &= e^ {\int P\left(x \right) dx}
\\\phi & =e^{\int \:\left(\frac{1}{x}+1\right)dx}
\\\phi & \:=e^{\ln x+x}
\\\phi & \:=x\left(e^x\right)
\end{align*}

Substituting everything to the solution of a first-order linear differential equation, we have

y(xe^x)=\int xe^x\left(12-\frac{12}{x}\right)dx+C_2
\\y\left(xe^x\right)=\int \left(12xe^x-12e^x\right)dx+C_2
\\yxe^x=\int 12xe^x-\int \:12e^x\:dx+C_2​

Use Integration by Parts to solve for the first integral

\begin{align*}
\int \:12xe^xdx & = 12 \int xe^x dx\\ 
 u = x &  &du=dx  \\
dv = & e^x \  & v=e^x  \\
\text{Therefore} \\ 
uv-\int \:vdu & =xe^x-\int \:e^xdx \\
& =xe^x-e^x \\
\text{Consequently} \\
\int \:12xe^xdx & = 12 \left( xe^x-e^x\right)
\end{align*}

Therefore,

\begin{align*}
yxe^x & =12\left(xe^x-e^x\right)-12e^x+C_2
\\yxe^x &=12xe^x-12e^x-12e^x+C_2
\\yxe^x &=12xe^x-24e^x+C_2
\end{align*}

Solving for C2

\begin{align*}
yx & =12x-24+\frac{C_2}{e^x}\:\:;\:y=0,\:x=1
\\0\left(1\right) & =12\left(1\right)-24+\frac{C_2}{e^1}\:
\\0 & =12-24e+\frac{C_2}{e^1}\:
\\0 &=-12+\frac{C_2}{e^1}\:
\\12e^1 & =C_2\:
\end{align*}

Therefore, the solution to the problem is

yx=12x-24+\frac{12e^1}{e^x}
\\or
\\yx=12x-24+12e^{1-x}

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

\frac{d}{dx}\left(\frac{dy}{dx}\right)=6x+3

Solution:

\begin{align*}
\frac{d}{dx}\left(\frac{dy}{dx}\right) & =6x+3  \\\  \\
let\:u & =\frac{dy}{dx} \\\ \\
\frac{du}{dx} & =6x+3 \\\ \\
Integrate,\\
\int \frac{du}{dx} & =\int (6x+3)dx \\\ \\
\int \frac{du}{dx} & =6\int xdx+3\int dx \\\ \\
u & =\frac{6x^2}{2}+3x+C_1 \\\ \\
u & =3x^2+3x+C_1 \\\ \\
Substitute, \\
\frac{dy}{dx} & =3x^2+3x+C_1 \\\ \\
dy & =\left(3x^2+3x+C_1\right)dx \\\ \\
Integrate,\\
\int dy & =\int (3x^2+3x+C_1)dx \\\ \\
\int dy & =3\int x^2dx+3\int xdx+C_1\int dx \\\ \\
y & =\frac{3x^3}{3}+\frac{3x^2}{2}+C_1x+C_2 \\\ \\
Simplify, \\
y & =x^3+\frac{3x^2}{2}+C_1x+C_2 \\
\end{align*}

Advertisements
Advertisements
Header Photos for Elementary Differential Equations Chapter 9 Special Second Ordered Equations

Chapter 9: Special Second-Ordered Equations


Supplementary Problems

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6


Advertisements
Advertisements

Determining if a given Differential Equation is Separable or Not


Determine whether each of the following differential equations is or is not separable, and, if it is separable, rewrite the equation in the form dy/dx=f(x) g(y).
\qquad \textbf{a}) \quad \frac{dy}{dx}=xy-3x-2y+6
\qquad \textbf{b})\quad \frac{dy}{dx}=\sin \left( x+y \right)
\qquad \textbf{c}) \quad y\frac{dy}{dx}=e^{x-3y^2}


Solution:

Part A

\begin{align*}
\frac{dy}{dx} & = xy-3x-2y+6 \\
\frac{dy}{dx} & = \left( xy-3x \right)-\left( 2y-6 \right)\\
\frac{dy}{dx} & = x\left( y-3 \right)-2\left( y-3 \right)\\
\frac{dy}{dx} & = \left( x-2 \right)\left( y-3 \right)
\end{align*}

Since F(x,y) is factorable in the form f(x) g(y), the given differential equation is separable.

Part B

\begin{align*}
\frac{dy}{dx} & = \sin\left( x+y \right) \\
\frac{dy}{dx} & = \sin\left( x \right)\cos\left( y \right) +\cos\left( x \right)\sin\left( y \right)\\
\end{align*}

Since F(x,y) is not factorable in the form f(x) g(y), the given differential equation is not separable.

Part C

\begin{align*}
y \frac{dy}{dx} & = e^{x-3y^2}\\
y \frac{dy}{dx} & = \frac{e^x}{e^{3y^2}}\\
\frac{dy}{dx} & =\frac{e^x}{y e^{3y^2}} \\
\frac{dy}{dx} & = e^x \left( \frac{1}{ye^{3y^2}} \right) \\
\end{align*}

Since F(x,y) is factorable in the form f(x) g(y), the given differential equation is separable.


Purchase Textbook: Differential and Integral Calculus by Feliciano and Uy


You can buy the textbook even without any PayPal account. Click on the appropriate card on the buttons below.

For concerns, email help@engineering-math.org

Book-Cover-for-Engineering-Math.Org_

Differential and Integral Calculus by Feliciano and Uy PDF Textbook

This is a PDF textbook to be sent to the email used in your PayPal account. For concerns, kindly email help@engineering-math.org

₱100.00


Looking for another textbook? Send this form and we will get back to you within 24 hours.


Advertisements
Advertisements

Mean and Variance | Introduction to Statistics and Data Analysis | Probability & Statistics for Engineers & Scientists | Walpole | Problem 1.10


For the data of Exercise 1.4 on page 13, compute both the mean and variance in “flexibility” for both company A and company B. 


Solution:

For the company A:

We know, based on our answer in Exercise 1.4, that the sample mean for samples in Company A is \displaystyle 7.950.

To compute for the sample variance, we shall use the formula

\displaystyle s^2=\sum _{i=1}^n\frac{\left(x_i-\overline{x}\right)^2}{n-1}

The formula states that we need to get the sum of \displaystyle \left(x_i-\overline{x}\right)^2, so we can use a table to solve \displaystyle \left(x_i-\overline{x}\right)^2 for every sample.

Note: You can refer to the solution of Exercise 1.7 on how to use a table to solve for the variance. 

The variance is

\displaystyle \left(s^2\right)_A=\sum _{i=1}^{10}\:\frac{\left(x_i-7.950\right)^2}{10-1}

\displaystyle =1.2078

The standard deviation is just the square root of the variance. That is

\displaystyle s_A=\sqrt{1.2078}=1.099

For Company B:

Using the same method employed for Company A, we can show that the variance and standard deviation for the samples in Company B are

\displaystyle \left(s^2\right)_B=0.3249 and \displaystyle s_B=0.570.


Advertisements
Advertisements
Advertisements
Advertisements